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Introduction

Interest in musical robots and automata is as old as written history (Archimedes and

Apollonius ca. 250 BC), and this interest has been steadily growing over the past few

decades (Solis and Takanishi 2007) (Kapur 2005), particularly amongst practitioners of

computer music. Although the manipulation of timbre has played a central role in

digitally synthesized music (Wessel 1979), little work has treated the dynamic

manipulation of timbre in musical robots. For this reason, the author has developed a

robot called Kiki which plays djembe and can dynamically produce a range of timbres.

Previous work has allowed the robot to learn to recognize timbral categories in human

performance (Krzyzaniak and Paine 2015), and to match timbres played by a human.

But how will the robot know in what contexts different timbres should be used? Can it

learn this by listening to a human play?

The present paper proposes a solution to this question by operationalizing it as the

problem of learning rhythms, where a rhythm comprises a sequence of timbral

categories distributed in time. In particular, since a particular rhythm provides context

for each of the timbres that comprise it, the goal is to make the robot capable of learning

specific repeated rhythmic patterns, recall them according to what a human plays, and

predict changes in the rhythmic patterns based on the sequence of timbres played by a
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human. In the absence of repeated rhythms, e.g. when the human is freely improvising,

the goal is for the robot to learn the general character of the human’s playing and match

those features without simply mimicking the human. The method presented shall focus

on challenges specific to robots with dynamic timbre-production capabilities, such as

latencies introduced by striking mechanisms which may need to move a considerable

distance between strokes.

Previous Work

This challenge intersects with several disciplines, and there exists relevant work in

the fields of algorithmic composition, interactive computer music, musical robots, and

statistical machine-learning. Popular algorithms used for composing music involve

concatenating elements chosen from a list of possibilities (Kircher 1650) (Tomus II Lib

VIII pars V) (Cope 2010); attempting to maintain a particular statistical distributions

amongst elements (Hauer 1922) (Xenakis 1992); and attempting to meet predefined

constraints (Zarlino 1968) (Hiller and Isaacson 1979) (Farbood and Schoner 2001).

Although these methods are not typically interactive, computer music more generally

often is (Rowe 1992) (Lewis 2000). However, in these systems the behaviour is often

either hard-coded or is manually configured by the user. By contrast, similar work in the

field of musical robotics attempts to learn certain aspects of the behaviour from a human

interactor (Weinberg et al. 2005) (Hoffman and Weinberg 2011) (Kapur 2008). A

somewhat separate line of work in machine-learning has used neural networks to learn

temporal dependencies in both musical (Todd 1989) (Mozer 1999) (Eck and Schmidhuber

2002) (Boulanger-Lewandowski 2014) and nonmusical applications (Sutskever et al.

2011) (Graves 2013). However, again these methods are not interactive. The present

paper extends the cited work in musical robotics by applying machine-learning

techniques, and extends the cited machine-learning techniques by making them

interactive.

2



Rhythmic Models

Components of Rhythm

A performed rhythm comprises at least three distinct temporal components: the

structural component, tempo, and timing (Honing 2002). The structural rhythm may be

extracted from a performed rhythm by using tempo tracking to isolate tempo (Scheirer

1998) (Goto 2001) (Percival and Tzanetakis 2014) and quantization to isolate timing

(Desain and Honing 1989) (Cemgil 2004). There are also methods of doing the inverse:

generating performances by applying tempo and timing to structural rhythm (Friberg

et al. 2006). This study limits the model to include only the structural component of

rhythm so it may be invariant to discrepancies in performance, consequently the word

‘rhythm’ shall be used to refer to structural rhythm henceforth.

Representations of Rhythm

In the 1940s and ’50s, the composer Milton Babbitt developed two mathematical

representations suitable for the proceduralization of rhythm. The first is known as a

‘duration series’, and the second as a ‘timepoint series’ (Babbitt 1962). Both deal only

with note onsets which limits them to monophonic rhythms, but does not preclude the

use of rests which can be conceptualized as having silent onsets. A duration series is an

ordered set of integers representing relative durations, constructed by dividing an

ordered set of inter-onset intervals by its greatest common divisor �⌧ . A timepoint

series is an ordered set of integers representing the metric positions of note onsets.

Suppose a grid is imposed on musical time, where the grid-spacing is �⌧ , and the grid

positions are i�⌧ 8 i 2 N. Timepoints are the indices 1 + (i mod C), where C is the

number of timepoints in a larger structural unit such as a beat or measure. A timepoint

series is the ordered set of those timepoints that are populated by onsets.
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If a rhythmic model is to operate in realtime, it will take small chunks of input and

generate small chunks of output, and the input and output will have to remain in phase

with each other. It is not possible to guarantee this with a durational representation of

rhythm. If, for instance, the model is given small durations as inputs and it continually

outputs large durations, over time the temporal separation between input and output

will be unbounded. Timepoints do not suffer this flaw as long durations can be built up

in small chunks by repeated concatenations of ;. Therefore timepoints shall be used for

the current application.

Implementation

The following subsections shall first describe a basic, oversimplified model for

learning rhythms, and in the subsequent subsections this basic model shall be expanded

to make it suitable for real-world applications.

Basic Approach

Prediction

Let the assumption be made that the beat period and phase of the music are known,

and the human’s onset times are captured and quantized. The initial method presented

here deals with one beat of music at a time, so C is set to the number of timepoints in a

beat. Every beat of the input rhythm I and output rhythm O is encoded as a set of C real

numbers. The values in I indicate the certainty that the human played an onset at the

respective timepoint; because perfect transcription is assumed, the input values used in

this study will either be 0 or 1. The values in O represent the probability that the robot

will play an onset at the corresponding timepoint. At a time mathematically

indistinguishable from the beginning of each beat (i.e. slightly before the beat, to account

for computation time) I in the previous beat is used to calculate O in the subsequent
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Figure 1. (a) The basic rhythm generation algorithm. At the beginning of one beat, input rhythms
from the previous beat are binarized and fed into a feedforward neural network. The network
outputs the next beat of the output rhythm. (b) The basic training algorithm. The network’s
outputs are interpreted as a prediction about the next beat of input rhythm, and at the end of that
beat, the network is updated with whatever the input rhythm actually contained.

beat. The model used is a feedforward neural network with C real-valued inputs and

outputs (other architectures shall be discussed below). So, at the beginning of each beat,

the network’s inputs are loaded with I and propagated through the network. The

outputs are interpreted as O. This is depicted in Figure 1 (a).

Learning

The network weights are initialized to random values. Consequently the outputs

are random, so the network must be trained in order to produce meaningful output. It is

desirable for the robot to be adaptable to musical characters that may be different between

users or from moment to moment during interaction with a single user. For this reason

an online learning strategy is adopted. It is possible to train a large network offline on a

very large corpus of existing or constructed rhythms of different characters, thereby

mimicking adaptability by brute force (this is further considered below). There may be

certain advantages to this approach. However, an online approach is taken here for the
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following reasons.

1. It is a design principal of interactive robots that they should treat humans as

individuals, not just generic humans (Fong et al. 2003). One way of achieving this

is allowing the robot to learn different models for different humans.

2. The author considers it to be a more poetically beautiful concept for the robot to

learn directly from its interactors, and recall this information during subsequent

interactions. This arrangement gives the robot a kind of personal history and also

allows individuals to interact with each other through the robot, and such would

not be the case with a strictly offline approach.

Online learning is accomplished by interpreting O as a prediction about what I will

contain in the next beat (i.e. what the human will play). After making such a prediction

at the beginning of one beat, the robot waits until the end of that beat to find out what I

actually contained. That rhythm is loaded into the network outputs, and the network

weights are updated using the standard backpropagation / gradient descent algorithm,

which attempts to nudge the network’s weights towards values that would have caused

the desired O for the given I. This is depicted in Figure 1 (b).

Improvements

The basic model as presented is capable of interactively generating timepoint series.

However, it makes a number of assumptions that limit its applicability to the intended

purpose. These shall be rectified presently.

Timbre

A rhythm, as executed on a given percussion instrument, is rarely understood to be

simply a sequence of onsets distributed in time. At the very least, a rhythm is
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additionally understood to be a sequence of timbral categories. Previous work has

shown that it is possible to classify these timbral categories in real time, as they are

played by a human percussionist (Krzyzaniak and Paine 2015)(Herrera et al. 2002).

Consequently, timbre may be included in the model of the human’s playing (i.e. the

network inputs). Similarly, if the robot is capable of producing different timbres, then

they may be modeled as well at the network output. This is accomplished by replacing

each input and output neuron in the simple model with a cluster of neurons, each

member of the cluster representing a discrete timbre. This arrangement is depicted in

Figure 3.

For the inputs, only those neurons that represent the timbre that the human played

at the given timepoint are set to 1. During training the input clusters are mapped to the

output clusters; in the present study the human and robot will be assumed to play

similar instruments such that the map is bijective.

To interpret the network’s outputs, a slightly more sophisticated statistical method

must be adopted to determine what the robot should play. Suppose that the network

output O contains C clusters of neurons (one per timepoint), O = {O1,O2...OC

}. Each

cluster O
c

2 O contains N neurons (each representing a timbral category), with

activation levels of O
c

= {O1
c

,O2
c

...ON

c

}. Let R, also containing N neurons in each of C

clusters, be the rhythm to be actually played by the robot, i.e. each R
c

contains 1 as a

member at most once, and all other members are 0. Each activation level On

c

is

interpreted as the probability that the corresponding timbral category should be

included in R, referred to henceforth as P [On

c

] for simplicity, i.e.

P [On

c

] = P (Rn

c

= 1|O
c

, n) = On

c

.

The overall probability that some unspecified category should be played for a given

cluster, referred to henceforth as P [O
c

], is P [O
c

] = P (R
c

3 1|O, c) = max(1,
P

N

n=1 On

c

). In

order to construct a rhythm for the robot to play that satisfies these probabilities, a
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decision is made about which timbral category, if any, is to be included in R
c

from cluster

O
c

by iterating over all On

c

2 O
c

, and selecting the first unit, if any, that satisfies the

criterion Rn

c

= 1 if
P

n

i=1 Oi

c

� r

c

, where 0 < r

c

 1 is a evenly distributed random

number chosen independently for each O
c

2 O.

This model assumes that the network has been trained. Prior to training, the

expected value of each neuron cluster is likely to be greater than 1, depending on which

activation functions are used and how the weights were initialized. If the standard

practice is used, whereby weights and rest states are initialized to random numbers with

zero mean, and the logistic sigmoid 1
1+e

�x

is the output-layer activation function, the

expected value of each output cluster will be about 0.5N (depending on the hidden-layer

activation function), and again the network will generate too many notes. If an online

learning strategy is adopted, the network should be pre-trained to generate zero at all

output neurons for all input vectors. This may be accomplished by feeding the network

random input vectors and training with a target output of all zeros, until it has ‘learned’

to output all zeros, according to the definition given in Equation 1.

Activation Function

Since valid values for output neurons lie between 0 and 1, it has thusfar been

assumed, according to standard practice, that a logistic sigmoid function would be used

for the output-layer activation. Notice, however, that this makes it impossible for the

network to indicate that with 100% likelihood the robot should play nothing on a given

timepoint. This is exacerbated by the presence of multiple neurons per cluster, because

the neuron activations are summed, thereby increasing the probability of a spurious

onset. Worse, if there are many timepoints per beat, this situation will occur frequently;

even if the summed probability is small for a given timepoint, spurious onsets will be

likely over time. So an activation function should be chosen which can explicitly

represent 0. One option is a ‘truncated sigmoid’, which is 1
1+e

�x

when x is greater than
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some threshold, and 0 otherwise. This was found to significantly outperform the logistic

sigmoid on all experiments presented in the Evaluation section of this paper.

Timing

Predicting each beat at the very beginning of that beat assumes that the robot can

strike the drum instantaneously if an onset is generated in the first timepoint of the

predicted beat. A human cannot strike a drum at the precise moment they decide to do

so, and it might not be realistic to impose that constraint on a robot. In other words, the

robot has latency, which must be dealt with. For a system with a single human and

robotic drummer, let there be defined three representations of the present – t

h

, t
r

, and t

c

.

These are, respectively, the present as defined by the human, the robot’s striking

mechanism, and a computer which is receiving the human’s input and sending

commands to the robot’s striker. From the human’s perspective, these are all translated

with respect to one-another. t
r

lags t
c

by some amount l
cr

which represents the entire

latency between the computer sending a command and the the sound of robot striking

the drum reaching the human. The robot should typically be designed in such a way

that l
cr

is constant. Furthermore, because a computer cannot act upon information until

it has received and processed it, t
c

lags t
h

by at least l
hc_min

. For the case at hand, in

which the computer is receiving rhythms via a microphone, l
hc_min

must represent a

worst-case scenario estimate that includes maximum buffering uncertainty, analysis

latency (including the duration of audio required to perform stroke-classification) and, if

rhythmic quantization is performed, the maximum unit of time by which a note could be

quantized backwards to end up on the first timepoint of the beat (i.e. half of the grid

spacing for grid-based quantizers). Additionally, the computer may deliberately

introduce some arbitrary padding latency, so that ultimately t

c

lags t
h

by a total amount

l

hc

. If t
h

must be in phase with t

r

(i.e. translated by an integer number of beats), padding

must be introduced such that l
hc

is the total amount of time needed between the human
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striking the drum and the computer sending a command to the robot, such that the

robot’s stroke falls on the desired timepoint of a future beat, as heard by the human. It

would be given by l

hc

= �t(ceil( lcr+l

hc_min

�t

) + B)� l

cr

, where �t is the beat duration, B is

a nonnegative integer constant, and ceil(x) is the ceiling function which returns the

smallest integer not less than x. Using B = 0 results in the minimum requisite value for

l

hc

, and increasing B specifies additional whole beats of delay.

Given a particular network topology and training strategy, the total number of beats

separating the human from the robot � =

l

hc

+l

cr

�t

should not spontaneously change values

according to the beat duration �t, but must be constant for the life of the network. This

can be accomplished by choosing a desired � >= ceil( lcr+l

hc_min

�t

), and defining a

minimum allowable beat duration, �t

min

, such that ��t

min

>= l

cr

Then, the appropriate

lag is simply l

hc

= ��t� l

cr

.

A training scheme that accounts for these multiple representations of the present is

depicted in Figure 2 and Figure 3. From the computer’s perspective, the network still

predicts what the robot should play in the immediate future, and learns from the

immediate past. However, from the human’s perspective, rather than predicting the

robot’s rhythm in the very next beat, the network predicts the rhythm � beats in the

future. Then, � + 1 beats later, the network is updated with what the human actually

played in that beat. This necessitates three distinct steps at each training cycle. One

forward pass through the network is made to predict the robot’s output. Then, in order

to put the network in the correct state for training, another forward pass is made using

the beat that ended � beats previously as input. Subsequently, a training pass is made

over the network, using the beat that just ended as the target output.
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Figure 2. Training algorithm that incorporates system latencies, as run at time t = 0. From the
human’s perspective, at the beginning of each beat, the computer trains the network by comparing
the what the human just played to what the network predicted she would play. Then the computer
predicts what the human will play � beats later.

Long-term Dependencies

One very obvious and grave problem with the model presented thus far is that it

only models temporal dependencies one beat in duration; it can only learn longer

rhythms where each beat in the rhythm is unique. Formally, the problem is that

feed-forward networks model functions, which map input to output, whereas rhythms

might more properly be discrete dynamical systems, in which the current state (i.e. beat),

and consequently the subsequent state, is determined by all past states. As stated in the

Previous Work section, Recurrent Neural Networks (RNNs) are a family of very deep

network topologies that model discrete dynamical systems with long-term temporal

dependencies, which have been used to generate music offline and non-interactively.

Although recent advances have made them very powerful, they are not well suited to

the task at hand. In particular, the timing solution present in the Timing section above

means that rhythm generation in this context is not causal. In other words, it is not

possible, at each step, to train the current state before putting the network into the next

state. Instead, because of the time-delay, training always occurs on a network state that

is a few cycles in the past. Of course it is in principle possible to save and subsequently

restore past states for training, but by that time predictions have already been made

based on future states, so reality effectively bifurcates at each training cycle, and it is not
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Figure 3. The improved algorithm. Each input and output neuron has been replaced by a cluster
of neurons to represent discrete timbral categories. (NB – layers are fully connected although
some connections have been omitted here). Time delay is handled by predicting several beats in the
future. Longer-range dependencies are modeled by including more of the past rhythm as network
input.

clear which branch to follow. It may or may not be possible to design a non-causal

dynamical neural network, but further investigation shall be left for future work. So in

order to expand the temporal range of the network, the feedforward model is upheld,

but more input neurons are included to encompass several past beats. At each training

cycle (the beginning of each beat), the input vector is shifted one beat to the left, and the

rightmost input neurons are populated with the most recently concluded beat. This

entire vector is propagated through the network to produce the next beat of output. This

is shewn in Figure 3. Training occurs as before.

Evaluation

A set of experiments were performed to assess the network’s ability to learn both

specific rhythms and the musical character of improvisation. These experiments were

carried out using two types of methodology. On type consists of strictly numerical

analysis, whereby encoded rhythms were fed into the network offline, and it’s outputs

12



were analyzed statistically. The other type involves the realtime input and output of

sound. In this latter type, contact-mic recordings were made of the core djembe strokes,

and audio-editing software was used to arrange these into audio files containing

metronomically precise rhythms. These recordings were played into the realtime

onset-detector and stroke-classifier described in (Krzyzaniak and Paine 2015), which was

trained to classify these particular strokes with 100% accuracy. Onset times were

ascertained by examining the audio-buffer timestamps and counting samples into the

buffer to where the onset occurred. The first two strokes in the constructed file were

used to define the tempo, and subsequent strokes were quantized using a simple

grid-based quantizer. The quantized strokes were then fed into the network in real-time,

one beat at at time. The network outputs were either sent to the robot to be played in

realtime, one timepoint at at time, or to a software simulation of the robot which delays

incoming messages by l

cr

before playing a recording of the stroke. These two types of

methodology are functionally identical. This software can receive live input from a

human just as easily as a constructed audio file. However, in the absence of robust

tempo-following and quantization, the software is rather inaccurate at transcribing

human performance, which makes it difficult to isolate the network’s behaviour.

Because accurate transcription was not a goal of this study, assessment with live human

input was not performed.

Network Topology

In all of the following studies, the network had three stroke categories in both the

input and output rhythms (understood to be bass, tone, and slap), twelve timepoints per

beat, 6 input beats (i.e. 216 individual input neurons), 1 output beat (72 neurons), and a

single hidden layer with 9 individual neurons. The output layer used a truncated

sigmoid activation function as described in the Activation Function subsection, with

threshold �4, and the hidden layer used softplus (ln(1 + e

x

)). Output is predicted two
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beats in advance, i.e. � = 2. In each experiment, the only model parameter, the

learning-rate `, was chosen by trial and error to be approximately optimal for the given

task.

The network shall be said to have ‘learned’ a rhythm when the robot is 95% likely to

play that rhythm in response to a particular input. This is defined as follows. Let On

c

be

the activation level of the n

th neuron in the c

th cluster in the output rhythm, let Rn

c

be a

binary value representing whether the robot actually plays the n

th timbre at timepoint c,

and Tn

c

is the same in the target rhythm. The probability P (R = T|O) that the robot will

actually play the target rhythm is defined to be

P (R = T|O) =

CY

c=1

8
>><

>>:

P [Oix(12T
c

)
c

] if T
c

3 1

1� P [O
c

] otherwise
(1)

where ix(1 2 T
c

) is the index of 1 in T
c

. Notice that if T is several beats in duration, the

product will have to be accumulated over several training cycles.

Learning Specific Rhythms

The first set of tasks involve learning specific rhythms that are played repetitively

by the human. The goal of this is to ascertain the degree to which the network can learn

when it is very precisely appropriate to play specific timbres. The dataset used in these

tasks comprised all of the repeated djembe rhythms in (Billmeier and Keïta 1999) (i.e. the

parts labelled ‘djembe 1’, ‘djembe 2’, etc . . . , but not ‘signal’ or ‘introduction’ or parts for

other instruments). At times, the djembe serves an accompaniment role, so certain

common accompaniment patterns appear in several pieces; such rhythms were only

included once. This resulted in 66 unique rhythms ranging in length from 1 to 16 beats

(mean 3.79), and containing a mixture of simple and compound meter (as written). Beat

groupings were used as given by the beaming in the text, although it is worth noting
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Table 1. Learning Specific Rhythms

Experiment Unit of Result Result

Individual Rhythms Number of repetitions required to learn a rhythm 14.32
Corpus of Rhythms Number of repetitions required to learn and retain 65 rhythms 106.5
Signal Rhythm Probability of playing correct rhythm following a signal 96%

that the Western conception of ‘beat’ is not entirely applicable to West African music,

and this represents only one of several possible encodings of the rhythms; another

encoding might involve keeping the duration eighth-notes (quavers), instead of the beat,

constant across rhythms. Some rhythms were written with superfluous repetitions, e.g. a

2-beat rhythm written twice to fill four beats; the superfluous beats were discarded. The

few instances of unusual strokes in the data were replaced with one of the core three.

The network was tested with this dataset on three tasks, to be presently discussed;

results are summarized in Table 1.

Individual Rhythms

In the author’s experience playing in community drumming ensembles in the

United States, a common musical piece consists of most members playing a single

accompaniment rhythm in unison, repeated ad infinitum, while a select few members

play counter-rhythms or improvised solos. Several such pieces may be played during a

single rehearsal or performance. Can the robot learn to play the accompaniment rhythms

in this scenario? Can it do so in a reasonable length of time? Assessment of this task was

performed by initializing the network weights, and repeatedly feeding a rhythm from

the dataset into the network one beat at a time. Here, the rhythms are taken out of

context and assumed to have been repeated infinitely, so even during the first training

cycle, inputs representing past beats were populated with previous repetitions of the

rhythm – i.e. each rhythm was rotated through the network. Then, learning duration was

measured by counting the number of times the rhythm was rotated through the network

in its entirety before it had been learned. This entire process, starting with initializing the
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network, was repeated for every rhythm in the dataset (N = 66) and the results were

averaged across rhythms. That entire process was repeated 10 times and the averages

were averaged. With ` = 0.65, the mean learning duration was 14.32 repetitions of the

rhythm (N = 10, � = 1.52). In the cited scenario, the network weights would have to be

manually initialized between pieces to achieve these results. If the weights are not

initialized in between pieces, it takes a little longer to learn each rhythm. In a test that

initialized the network before the first rhythm but not subsequently between rhythms,

using ` = 0.5, the average duration was measured to be 21.42 repetitions of the rhythm

(N = 10, � = 2.760955). On the one hand, this is very feasible, as it takes only 42 seconds

to repeat a 4-beat rhythm 21 times at 120 beats per minute. On the other hand it may be

tedious to repeat a rhythm 21 times to a robot. Note however that the definition of

‘having learned’ a rhythm is relatively stringent; the network is capable of representing

7.9⇥ 10

28 unique 4-beat rhythms, and it is thus extremely unlikely that the network will

output the correct rhythm by chance alone, yet the given definition specifies that such

will happen 19 times out of 20. A more relaxed definition would be that the network has

‘learned’ a rhythm after each neuron is 95% likely to output its target value. Repeating

the the last experiment with this relaxed definition and ` = 0.3 yields a mean of 9.87

repetitions of the rhythm (N = 10, � = 0.68). With such a definition, it is not likely that

the network will output the correct rhythm precisely, but it is significantly more likely

than random to get each timepoint correct, which should produce something that

resembles the rhythm. In other words, after hearing a new rhythm only a few times, the

network should sound like it is starting to get the gist.

In many musical situations, it may be appropriate for the robot not to play the same

rhythm as the human, but to always accompany rhythm a with rhythm b. In principal,

two human percussionists could train the robot to exhibit this behaviour, if one human’s

rhythm was used as the network input and the other human’s as the target output.
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Corpus of Rhythms

This shows that a previously-untrained network can learn individual rhythms, but

can it also retain rhythms it has learned? In a more standard machine-learning scenario

the network would be pre-trained with a corpus of rhythms prior to human interaction,

either by offline training or by previous online interaction with humans. Can the

network learn a corpus of rhythms? The same 66 rhythms as above were used to test

this. Here, after initializing the network and training it to output zeros, each rhythm was

rotated through the network in its entirety once, one after the next, round robin, until all

rhythms had been learned. Indeed, on average, the network learned all of the rhythms

after hearing each rhythm 305.50 times (` = 0.15, N = 10, � = 158.55). Longer rhythms

take longer to learn, according to Equation 1; in the current dataset one outlier rhythm

was twice as long as any other, and this one always took much longer to learn than the

others. Excluding it from the dataset resulted in a mean of 106.50 repetitions of each

rhythm (N = 10, � = 11.38). The convergence rate, in general, could probably be

improved using standard techniques (annealing, scrambling the order on each cycle,

Newton’s method, batch learning, etc...), although here the goal was to demonstrate that

the network is capable of learning when to produce certain timbres across a large variety

of contexts – offline batch learning with maximum efficiency was not the primary goal.

If the only goal were to learn specific rhythms, it would of course be faster and more

precise to simply transcribe what the human plays, hash it, and store it in a database.

Some advantages of the method presented here are as follows: this method is agnostic to

the length of rhythmic patterns so it is not necessary to explicitly segment the pattern

boundaries; neural networks tend to be impervious to small variations in input, as may

arise as the result of transcription error or creative variation; fuzziness at the output may

be desirable to alleviate monotony – because a trained network contains a statistical

model of the human’s playing, this fuzziness may be accepted as musically interesting
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variation.

Signal Rhythms

Another task not suitable for database lookup is predicting changes in the music

according to context. Often in the rhythmic music of Africa and Latin America, special

rhythms are used to signal musical changes. A good example comes from a pair of

rhythms in the dataset, called Yankadi and Makru. The basic Yankadi rhythm is repeated

until the drum leader plays a signal rhythm (either on a whistle or a drum) which signals

the switch to Makru. Then the drummers repeat the Makru rhythm until the leader

plays the signal again, which prompts the transition back to Yankadi, etcetra. So, the

signal rhythm could be followed by either Yankadi or Makru, depending on the context.

Can the network learn and retain the ability to predict what the human will play

following the signal? This was tested as follows. A numerical sequence was constructed

comprising 3 repetitions of Yankadi, followed by the signal, followed by 3 repetitions of

Makru, followed by the signal again. Three repetitions are the minimum such that the

network cannot learn this sequence as a single rhythm, i.e. every six beat window is not

unique; in other words, the network can not know in advance whether the human plans

on playing the signal or another repetition of the current rhythm. This rhythm was used

to train the network with ` = 0.1 until the least accurate output neuron over the whole

sequence was at least 40% accurate, (roughly meaning that it was about 40% accurate in

guessing whether the human would branch to the signal or continue repeating the

rhythm). Then, an audio recording was constructed which contained an arbitrary

number of repetitions of each rhythm (always 8), each followed by the signal. This audio

file was fed into the network and conceptually paused after the signal, at which time the

network had already predicted the next two beats. The probability that the predicted

two beats would belong to the correct rhythm was calculated again according to

Equation 1. This process was repeated 20 times (10 transitions to each of Yankadi and
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Table 2. Learning Improvisation

Experiment Unit of Result Result

Note Density Correlation and slope of regression line for in vs. out note density r = 0.977; m = 1.0
Meter Probability of playing on an incorrect timepoint 0.39%
Syncopicity Correlation and slope of regression line of input vs. output syncopicity r = 0.96; m = 0.80

Makru). On average, the probability that the network would output the first two beats of

the correct rhythm was 0.96 (N = 20, � = 0.029). During this test, the network continued

to learn online from the input sequence with a rate of 0.1. As learning goes hand-in-hand

with forgetting previous information, one might predict that the extra repetitions of

Yankadi and Makru in the test sequence would have caused the network to forget the

meaning of the signal in the meanwhile. On the contrary, no significant change in

accuracy was observed over time (it actually increased marginally), even though this

task updated the network weights 720 times during testing (there were that many beats

in the input sequence).

Learning Improvisation

The preceding section treats the network’s ability to learn specific, repeated

rhythms. In a different scenario, a human may improvise rhythms with no explicit

structural repetition. In that case, the robot would not be expected to play in unison with

the human, but should instead either match or deliberately oppose salient characteristics

of the human’s music. Three tasks were used to assess the network’s ability to do this, as

will be presently discussed, and the results are summarized in Table 2.

Note Density

One such character is the note density, d, of the music, which may be defined here as

the number of onsets divided by the number of timepoints in a given span of music, or,

if rhythms are statistical, d =

P
C

c=1 P [O
c

]/C. Very sparse rhythms may have a different

aesthetic character than very dense rhythms, and in many cases it would be appropriate
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for the robot to match the human’s d. Consider a scenario wherein the human

improvises a rhythm with a particular character and corresponding d for a while, and

after some time begins improvising with a new character and corresponding d. Can the

robot adapt to this change? This was tested as follows. First, a very long rhythmic

training sequence was constructed comprising 6000 beats. For each 120-beat segment

(representing one minute of playing at 120 BPM), a random d was chosen, and a random

rhythm was generated in that segment by, with a probability of d, populating each

timepoint with an onset in a random timbral category. The resulting sequence then

contained 50 such concatenated segments. To train the network, the entire sequence was

shifted through the network, to simulate previous interaction with a human. Then a new

6000-beat validation sequence was constructed by the same means, and shifted through

the network. At each beat of the validation sequence, the observed rhythmic density of

the network input (previous 6 beats) and predicted output (one beat) were recorded and

subsequently correlated. The input density and output density were found to be linearly

correlated with r = 0.977, and the regression line had a slope of 1, meaning that the

network is very good at matching the note density of improvised rhythms. In certain

scenarios, it might be desirable for a robot to oppose the human’s d rather than mimic it,

such as when a foreground musical role in one part should be paired with a background

role in the other part; the described method does not present an obvious way of

achieving this.

Meter

Another salient characteristic of rhythm is its meter. In particular, in most cases, the

human’s decision to play in either simple or compound meter should be matched by the

robot. Simple meter is characterized by a binary or quaternary subdivision of the beat

with onsets on the 1

st, 4th, 7th, 10th timepoints (i.e. 16th notes or semiquavers) of any

beat, whereas compound meter uses a tripartite subdivision with onsets occurring on
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the 1

st, 5th, and 9

th timepoints (triplets). These shall be referred to as the ‘valid’

timepoints for the corresponding meters. The network’s ability to match the input meter

was tested as follows. A training set of 1000 6-beat rhythms were constructed for each

meter, by randomly populating the respective valid onsets with an average note density

of 1 onset per beat. Each rhythm was rotated through the network once, alternating

meters. Then a validation set of 100 6-beat rhythms in each category were similarly

constructed and rotated through the network. Because meter is defined by those

timepoints where onsets should not occur, the probability of playing on at least one

invalid timepoint was measured for each beat of output, and averaged across all beats.

On average, the network produced output on an invalid timepoint with a probability of

0.0039 (N = 1200, � = 0.029). Although this is reasonably low, notice that it took a very

large number of training cycles to achieve. With much less training, the network will

begin producing invalid onsets with a probability of exactly 0 on the majority of beats,

but will spuriously produce a relatively high probability, distributed in small quantities

across all invalid neurons, on a handful of beats. More training reduces the frequency

and value of these spuriously high probabilities, but does not seem to eliminate them. So

although the network can match meter given enough training, it does have trouble

producing output of exactly 0 on specific timepoints.

Syncopicity

Yet another salient characteristic of rhythm is syncopicity, s, which is a measure of

how syncopated a rhythm is. This experiment considers only the 1

st, 4th, 7th, 10th

timepoints of any beat, referred to collectively as the ‘valid’ timepoints, whereas the 4

th

and 10

th specifically are considered the syncopated timepoints. Here s shall refer to the

rhythmic density defined over the syncopated timepoints divided by the rhythmic

density defined over the valid timepoints for a given span of rhythm. Random

sequences with given s were constructed by, with probability s, populating syncopated
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timepoints with an onset in a random category, and doing so with a probability of 1� s

in other valid timepoints, resulting in an overall note-density of 0.5. The network’s

ability to match syncopicity was tested as for note density; i.e. a 6000 beat training

sequence followed by a 6000 beat validation example, with 120-beat segments with

random r. Output syncopicity was 96% linearly correlated with input syncopicity. The

slope of the regression line was 0.80 indicating that although the network was very good

at matching s, it has some trouble producing extreme values of s. This is consistent with

the results of meter test above, which suggests the network has some trouble outputting

exactly 0 on specific timepoints.

Future Work

In the future, the work presented in this paper should be tested with human

interactors. How does this method compare to playing with another human, or alone, or

to a robot that generates random rhythms, non-interactively? Does this method feel

responsive? If users had a percussion robot employing this algorithm at home, would it

encourage them to play longer or more frequently than they would otherwise? Will

fuzziness at the robot’s output be interpreted as creativity or mistake?
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