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Introduction

Interest in musical robots and automata is as ol(}/ef y\‘tenhi/story (Archimedes and

-
1

p
Apollonius ca. 250 BC), and this interest has been SJJ@X ﬁ wing over the past few

;%ﬁ‘hrly amongst practitioners of
computer music. Although the manipulation-of timbrée’has played a central role in

digitally synthesized music (Wessel 197(27/1»/tﬂe\yv0
l !

S )
manipulation of timbre in music@ 0 o\tsT’F/e/rﬁ?(is reason, the author has developed a

decades (Solis and Takanishi 2007) (Kapu,

has treated the dynamic

robot called Kiki which plays d san dynamically produce a range of timbres.
Previous work has allowed /thé robotto learn to recognize timbral categories in human

performance (Krzyzania ang@} /el2015), and to match timbres played by a human.

But how will the robottknow 1 hat contexts different timbres should be used? Can it
learn this by listeni%\a huyman play?
/

—

@@}proposes a solution to this question by operationalizing it as the
/ J

problem /}f— a

o 2 . . . . .
categ distributediin time. In particular, since a particular thythm provides context

each of the timbres that comprise it, the goal is to make the robot capable of learning
%ﬁl repeated rhythmic patterns, recall them according to what a human plays, and
4

edictchanges in the rhythmic patterns based on the sequence of timbres played by a

1



human. In the absence of repeated rhythms, e.g. when the human is freely improvisj

the goal is for the robot to learn the general character of the human’s playing and
those features without simply mimicking the human. The method presented shal

on challenges specific to robots with dynamic timbre-production capabilities, s vch?ﬁ F/
/

latencies introduced by striking mechanisms which may need to move a consi ers!\blg/
distance between strokes. -
)

9

usical robots, and

Previous Work

This challenge intersects with several disciplines, and

e
the fields of algorithmic composition, interactive computer L@,
mpos

statistical machine-learning. Popular algorithms use;d?% o/ing music involve

C
|
@'Cher 1650) (Tomus II Lib

concatenating elements chosen from a list of possib ﬂ@?

VIII pars V) (Cope 2010); attempting to aparticular statistical distributions

amongst elements (Hauer 1922) (Xenakis 199 attempting to meet predefined

constraints (Zarlino 1968) (Hiller and I aéc:sél,??m) (Farbood and Schoner 2001).

\1}7 izf’gé;n/c'tive, computer music more generally
%, in these systems the behaviour is often
al —}@{1 red by the user. By contrast, similar work in the
réitksjyiearn certain aspects of the behaviour from a human

offman and Weinberg 2011) (Kapur 2008). A

Although these methods are not

often is (Rowe 1992) (Lewis 20

either hard-coded or is ma

field of musical robotics atte
interactor (Weinberg et al.
somewhat separateline f work in machine-learning has used neural networks to learn
temporal depe@le@ in both musical (Todd 1989) (Mozer 1999) (Eck and Schmidhuber

2002) (Boulan r\-Le‘\_&z(‘ndowski 2014) and nonmusical applications (Sutskever et al.

2011) reﬁf\%?) ~However, again these methods are not interactive. The present

ends the cited work in musical robotics by applying machine-learning

techniqu S, and extends the cited machine-learning techniques by making them
nt



Rhythmic Models \:Q\\

Components of Rhythm
A performed rhythm comprises at least three distinct temporal components:
(
structural component, tempo, and timing (Honing 2002). The structural r ' m‘&ybé
extracted from a performed rhythm by using tempo tracking to is até_aeﬁpg cheirer
isc@ timing

in

1998) (Goto 2001) (Percival and Tzanetakis 2014) and quantization

(Desain and Honing 1989) (Cemgil 2004). There are also methods of

generating performances by applying tempo and timing tostructural rhythm (Friberg
et al. 2006). This study limits the model to include only th’e/@ur component of

rhythm so it may be invariant to discrepancies in per, goﬁsequently the word

&
‘tThythm’ shall be used to refer to structural rhythm 'KC @1

/-
Representations of Rhythm %
In the 1940s and "50s, the compose,// on Babbitt developed two mathematical

| Y )
representations suitable for the pé?)zfn of rhythm. The first is known as a

‘duration series’, and the secornd as-a ‘timepoint series’” (Babbitt 1962). Both deal only

ordered set of integers e

ordered set of inte%yt vals by its greatest common divisor A7. A timepoint

ing relative durations, constructed by dividing an

series is an orc}e/ set of integers representing the metric positions of note onsets.
|

ié\im?lyéed on musical time, where the grid-spacing is A7, and the grid



If a rhythmic model is to operate in realtime, it will take small chunks of input

generate small chunks of output, and the input and output will have to remain in ph %
with each other. It is not possible to guarantee this with a durational representation.of

rhythm. If, for instance, the model is given small durations as inputs and it comg(\;a}-lx F/
outputs large durations, over time the temporal separation between input ou’épgjc//
will be unbounded. Timepoints do not suffer this flaw as long dur 1611—5‘?& ilt up

in small chunks by repeated concatenations of ). Therefore tim o@\a/l‘l' be used for

the current application.

Implementation C

\\g—
The following subsections shall first describe a }aiz_?ve i'%plified model for
|
learning rhythms, and in the subsequent subsecti_on& _b&\'c model shall be expanded
to make it suitable for real-world applicatio /%_

Basic Approach / /
<> I'\V/\\)
Prediction WA _/

Let the assumption be made t e beat period and phase of the music are known,
im @l’cured and quantized. The initial method presented

here deals with one bedt si a{ a time, so C'is set to the number of timepoints in a

beat. Every beat of@ymm I 'and output rhythm O is encoded as a set of C real

and the human’s onse

_/
numbers. The >Vcﬂﬁ inLindicate the certainty that the human played an onset at the

[ es\
et oin\BBecause perfect transcription is assumed, the input values used in
erbe 0 or 1. The values in O represent the probability that the robot

this study %
/
ill onset at the corresponding timepoint. At a time mathematically

respective ti

indistinguishéble from the beginning of each beat (i.e. slightly before the beat, to account

r C()/p"Jtation time) [ in the previous beat is used to calculate O in the subsequent

4
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Decide
what to

play in
next beat

What
values of w
cause this
outpute

robot [ -

Figure 1. (a) The basic rhythm generation algorithm. At the be ' in@ ne beat, input rhythms
from the previous beat are binarized and fed into a feedf g»\(eur network. The network
outputs the next beat of the output rhythm. (b) The W ng algorithm. The network’s
outputs are interpreted as a prediction about the next beW'rhythm, and at the end of that
beat, the network is updated with whatever the inp ally contained.

beat. The model used is a feedforward neura rk with C real-valued inputs and

outputs (other architectures shall be di{@Z&l below). So, at the beginning of each beat,

sl

the network’s inputs are load Q ropagated through the network. The

outputs are interpreted as O. T e d in Figure 1 (a).

Learning @I

The network weights

e Initialized to random values. Consequently the outputs
are random, so the‘networ ust be trained in order to produce meaningful output. It is
desirable for the _}\to e adaptable to musical characters that may be different between
users or fromxmo /tf}o moment during interaction with a single user. For this reason

an onlinedearn ategy is adopted. It is possible to train a large network offline on a

rpus of existing or constructed rhythms of different characters, thereby

5



following reasons. &x}

1. Itis a design principal of interactive robots that they should treat humans as_-

individuals, not just generic humans (Fong et al. 2003). One way of achieyi }%HS

allows individuals to interact with each other throug}» bot, and such would
/

not be the case with a strictly offline approach. \\
/

| .
Online learning is accomplished by interpreting\g/prediction about what I will

After making such a prediction

the desired O for the given @i epicted in Figure 1 (b).

/

Improvements

The basic moglg\(as\xé/'sénted is capable of interactively generating timepoint series.
](es\s\\n;lmber of assumptions that limit its applicability to the intended

However, it

purpose/"[hes shal’fbé rectified presently.

rhythm, as executed on a given percussion instrument, is rarely understood to be

j/sequence of onsets distributed in time. At the very least, a thythm is

6



additionally understood to be a sequence of timbral categories. Previous work has . |

shown that it is possible to classify these timbral categories in real time, as they ar{i&\j

played by a human percussionist (Krzyzaniak and Paine 2015)(Herrera et al. Z?
770

network inputs). Similarly, if the robot is capable of producing different ti s, tf\eil/
they may be modeled as well at the network output. This is accomplishe eplacing

Consequently, timbre may be included in the model of the human’s playing (i.

Figure 3.

da
For the inputs, only those neurons that represent the | iff@ the human played
\r )
C
|

usters are mapped to the

at the given timepoint are set to 1. During training t@
b
/ﬂl be assumed to play

output clusters; in the present study the human and\ro

re sophisticated statistical method

similar instruments such that the map is kije

To interpret the network’s outputs,/{ sli h%
must be adopted to determine v\@t thle\lz)peff} uld play. Suppose that the network

output O contains C' clusters &f neur ne per timepoint), O = {0y, 0,...0¢}. Each

cluster O, € O contains N n?ron h representing a timbral category), with

activation levels of O, i@@} Let R, also containing N neurons in each of C

clusters, be the rhyth"%t y played by the robot, i.e. each R, contains 1 as a
a

member at most o% 1l ther members are 0. Each activation level O is

|
interpreted as gae‘ il;tér that the corresponding timbral category should be

(. TR
, ré@r_r/ ﬁ to henceforth as P[0?] for simplicity, i.e.

P[G)Z]:ﬂ:Zc: cn):@?'

included in

The.overall probability that some unspecified category should be played for a given

referred to henceforth as P[Q], is P[0.] = P(R, 3 1|0, ¢) = max(1, 3 07). In

|
/ogonstruct a rhythm for the robot to play that satisfies these probabilities, a

7



decision is made about which timbral category, if any, is to be included in R, from cl sx

O, by iterating over all O] € O,, and selecting the first unit, if any, that satisfies th 9

criterion R? =1 if Y7 O > r., where 0 < r. < 11is a evenly distributed rand(?,-

number chosen independently for each O, € O. | \ﬁ\r/
(

/

\_/

This model assumes that the network has been trained. Prior to training,

practice is used, whereby weights and rest states are initialized to randem fiumbers with

expected value of each neuron cluster is likely to be greater than

activation functions are used and how the weights were initializ

zero mean, and the logistic sigmoid —— is the output-layer-activation function, the

14+e—*

e
expected value of each output cluster will be about 0.5N ( e‘}gghj

=

on the hidden-layer
activation function), and again the network will geqﬁfﬁ; 100 many notes. If an online
learning strategy is adopted, the network should_bel\}g )iiied to generate zero at all
output neurons for all input vectors. Thi e accomplished by feeding the network

random input vectors and training with a target ottput of all zeros, until it has ‘learned’

to output all zeros, according to %ﬁ de ir@t:io/gi\,ven in Equation 1.
\_ J
N

Activation Function

Since valid values

assumed, according to st
for the output-layer acti
network to indicatexthatwithi“100% likelihood the robot should play nothing on a given
timepoint. ThiI(l };«;@?r ated by the presence of multiple neurons per cluster, because

the neuron a 'V}tior_{yére summed, thereby increasing the probability of a spurious

)1/ 0. One option is a ‘truncated sigmoid’, which is == when z is greater than

8



some threshold, and 0 otherwise. This was found to significantly outperform the lo 'sx

sigmoid on all experiments presented in the Evaluation section of this paper.

Timing | CO \

Predicting each beat at the very beginning of that beat assumes that the(r ot'\gal/

strike the drum instantaneously if an onset is generated in the first ti

nt.of the
@idetodo
ot>In othe

r/words, the

predicted beat. A human cannot strike a drum at the precise m

so, and it might not be realistic to impose that constraint on a rob

robot has latency, which must be dealt with. For a system

robotic drummer, let there be defined three representation{@i:j
|
the'r

a single htiman and
sent —t,, t,, and t..

These are, respectively, the present as defined by the huma /obot’s striking

mechanism, and a computer which is receiving the L@Z )’s/jnput and sending
commands to the robot’s striker. From the human er;ieeéve, these are all translated
with respect to one-another. ¢, lags t. by some amount /. which represents the entire

latency between the computer sending /a/c&nm\a nd the the sound of robot striking
the drum reaching the human. @rob'»qt_ sj}o/yl " typically be designed in such a way

that /., is constant. Furthermé

it has received and processed it, t. 1a

-V@hms via a microphone, lj,. i, must represent a

which the computer is

worst-case scenario es

ithate-thatdncludes maximum buffering uncertainty, analysis
latency (including % ioh of audio required to perform stroke-classification) and, if

)
)
rhythmic quan/tiza ionis performed, the maximum unit of time by which a note could be

—
quantized bac {"Q@’ to end up on the first timepoint of the beat (i.e. half of the grid
-/

spacing ﬁg% sed quantizers). Additionally, the computer may deliberately
i m

.
% bitrary padding latency, so that ultimately ¢. lags ¢, by a total amount
f tpam e in phase with ¢, (i.e. translated by an integer number of beats), padding

9



striking the drum and the computer sending a command to the robot, such that the '\K

robot’s stroke falls on the desired timepoint of a future beat, as heard by the huma&\j

would be given by ;. = At(ceil(%) + B) — ., where At is the beat duratio

Given a particular network topology and training strategy,

separating the human from the robot 3 = “<ter should no

according to the beat duration At, but must be constant for, of the network. This

! '/
can be accomplished by choosing a desired 3 >= ceil (‘e 7)3

t

minimum allowable beat duration, At,,;,, such that @? >=., Then, the appropriate
( )/\
lag is simply I, = BAt — [, \ _/'

A training scheme that accounts for these u@epresemtations of the present is

defining a

depicted in Figure 2 and Figure 3. Fromthe/com r’s perspective, the network still
predicts what the robot should in'\tllg )m/;ﬁ diate future, and learns from the
immediate past. However, fr e 'S perspective, rather than predicting the
robot’s rhythm in the very n?I be network predicts the rhythm 3 beats in the
future. Then, 3 + 1 be e@'n twork is updated with what the human actually

played in that beat. ThiS'necessit te/s three distinct steps at each training cycle. One

forward pass thrm% etwork is made to predict the robot’s output. Then, in order
|

to put the netw/erk' cofrect state for training, another forward pass is made using

the beat thate

p
é@. beats previously as input. Subsequently, a training pass is made
-/

rky.using the beat that just ended as the target output.

10



train [

R 1 2 3

t, : : |
' At training %,
1 i 2

t i input 5 7@@ ) ) s

r BAt ! S
1 . IN
: 5 " -4 SR 2 3

£ = — + : . + : : || U/
l"fhc"" or -

Figure 2. Training algorithm that incorporates system latencies, as run dt ti m the

human'’s perspective, at the beginning of each beat, the computer trains/the netw comparing
the what the human just played to what the network predicted she wou . Then the computer
predicts what the human will play /3 beats later.

Long-term Dependencies //

One very obvious and grave problem with the m esentéd thus far is that it

only models temporal dependencies one beat in dutatioty jt/aan only learn longer

\ﬂallry/che problem is that

nap input to output, whereas rhythms

rhythms where each beat in the rhythm is uniqu

feed-forward networks model functions, w
might more properly be discrete dynamieal systenis, ih which the current state (i.e. beat),

and consequently the subsequer@t tel,\ig/dae’@ \ined by all past states. As stated in the

Previous Work section, Recu euralNNetworks (RNNs) are a family of very deep

network topologies that model-discrete-dynamical systems with long-term temporal
dependencies, which have @ to generate music offline and non-interactively.
Although recent advances have {ie them very powerful, they are not well suited to
the task at hand. In/p r‘(g'{séthe timing solution present in the Timing section above
means that rhy;lfr_h n ati%)n in this context is not causal. In other words, it is not
possible, at alchﬁt%,ﬁ) train the current state before putting the network into the next

state. Ingfead;because of the time-delay, training always occurs on a network state that

few cycles invthe past. Of course it is in principle possible to save and subsequently

restore paststates for training, but by that time predictions have already been made

%cy{uture states, so reality effectively bifurcates at each training cycle, and it is not

11



3 Input severadl
£ past beats

robot | f

Figure 3. The improved algorithm. Each input and output neu
of neurons to represent discrete timbral categories. (NB — Ia
some connections have been omitted here). Time delay is handle
future. Longer-range dependencies are modeled by includi

input. | )/e\

clear which branch to follow. It may or ma

dynamical neural network, but further i/y?tl ation shall be left for future work. So in
t

order to expand the temporal ra%e of Q%v rk, the feedforward model is upheld,
but more input neurons are includ n ass several past beats. At each training
cycle (the beginning of each l:g% vector is shifted one beat to the left, and the
ulate
|

rightmost input neurons with the most recently concluded beat. This

entire vector is propagate he network to produce the next beat of output. This

is shewn in Figure 3, Training.occurs as before.

ing two types of methodology. On type consists of strictly numerical

alys'/\'whereby encoded rhythms were fed into the network offline, and it’s outputs

12



were analyzed statistically. The other type involves the realtime input and output of '\K
N
‘ _/

sound. In this latter type, contact-mic recordings were made of the core djembe sp%&&/\

and audio-editing software was used to arrange these into audio files containing -

metronomically precise rhythms. These recordings were played into the realti wm\

J
onset-detector and stroke-classifier described in (Krzyzaniak and Paine 2015), hi'&h\w s

ti re

sam\p1|e5'|into the

trained to classify these particular strokes with 100% accuracy. On

used to define the tempo, and subsequent strokes were q d using a simple

grid-based quantizer. The quantized strokes were then fe@ﬁﬁo twork in real-time,
one beat at at time. The network outputs were either/seﬂ to-the robot to be played in
realtime, one timepoint at at time, or to a software s'rm,FXI? fﬁ of the robot which delays
incoming messages by [, before playing a eccy(dm%he%roke. These two types of

ar

methodology are functionally identical. Thi an receive live input from a

i ever, in the absence of robust

human just as easily as a constructed ayﬁ/

. o \ Y ). . .
tempo-following and quantlzatl@ e&g%@yls rather inaccurate at transcribing

human performance, which ma It to isolate the network’s behaviour.

Because accurate transcripti?n a goal of this study, assessment with live human

input was not performed. Q, ,

%/

13



beats in advance, i.e. 5 = 2. In each experiment, the only model parameter, the

IN/K
learning-rate ¢, was chosen by trial and error to be approximately optimal for the %\7

task.

The network shall be said to have ‘learned” a rhythm when the robot is

play that rhythm in response to a particular input. This is defined as follows.

.

re a t'hepoint ¢

binary value representing whether the robot actually plays the n*¢ ti

C

PR=T|0)=]]

c=1

where ix(1 € T,) is the index of 1 in T.. Noti

product will have to be accumulated oye/(r/;/exenal aining cycles.

O '\/)/'
Learning Specific Rhyt %[

The first set of tasks invelvelea specific rhythms that are played repetitively

by the human. The goa th@ /ascertain the degree to which the network can learn
when it is very precisely appropriate to play specific timbres. The dataset used in these
tasks comprised albof the r¢peated djembe rhythms in (Billmeier and Keita 1999) (i.e. the
parts labelled l’/é}{g;gb 17 ‘f]/embe 2, etc ..., but not ‘signal” or ‘introduction” or parts for

. |, |- . . .
other instru n%s)._Aytlmes, the djembe serves an accompaniment role, so certain

commo ;@% i
i once. This resulted in 66 unique rhythms ranging in length from 1 to 16 beats

14



Table 1. Learning Specific Rhythms

IN/K
Experiment Unit of Result Res &/\7

Individual Rhythms ~ Number of repetitions required to learn a rhythm 14.32
Corpus of Rhythms ~ Number of repetitions required to learn and retain 65 rhythms 106
Signal Rhythm Probability of playing correct rhythm following a signal %

2-beat thythm written twice to fill four beats; the superfluous beats were discarded. The
few instances of unusual strokes in the data were replaceMth ne of the core three.
The network was tested with this dataset on three ta;k&, \wp@gs/ently discussed;
results are summarized in Table 1. | O )/\a
N

Individual Rhythms

In the author’s experience playing /u{(_:‘ mm drumming ensembles in the

(C7 )

United States, a common music@iece\c_ogs@s f most members playing a single

2 %ﬁnitum, while a select few members

play counter-rhythms or im%o ised solos. Several such pieces may be played during a

N

accompaniment rhythm in un

single rehearsal or perfer @a the robot learn to play the accompaniment rhythms

in this scenario? Can i

sONn ar€asonable length of time? Assessment of this task was

performed by initiglizing the network weights, and repeatedly feeding a rhythm from
|

the dataset into/ﬂT etwork/one beat at a time. Here, the rhythms are taken out of

context and 4ds %&j tj have been repeated infinitely, so even during the first training

cycle, inp/gts% senting past beats were populated with previous repetitions of the
thin —.e. e

rhythm was rotated through the network. Then, learning duration was

measured ounting the number of times the rhythm was rotated through the network

AN

yety before it had been learned. This entire process, starting with initializing the

15



network, was repeated for every rhythm in the dataset (N = 66) and the results wer '\K
averaged across rthythms. That entire process was repeated 10 times and the average \ 9
were averaged. With ¢ = 0.65, the mean learning duration was 14.32 repetitions of tb\ —
rhythm (N = 10,0 = 1.52). In the cited scenario, the network weights would h ﬁb/bﬁe F/
manually initialized between pieces to achieve these results. If the weightsar notl\:/
initialized in between pieces, it takes a little longer to learn each rhythm.In a-testthat

tl betv>ees|n thythms,

initialized the network before the first rhythm but not subsequ

using ¢ = 0.5, the average duration was measured to be 21.42 repetitions-éf the rhythm

(N = 10,0 = 2.760955). On the one hand, this is very feasible, as it takes only 42 seconds

to repeat a 4-beat rhythm 21 times at 120 beats per minutq./@l e other hand it may be

tedious to repeat a thythm 21 times to a robot. Note}“:?%-\a/%he definition of

—~
‘having learned” a rhythm is relatively stringent; thkwﬁlg is capable of representing

u%z?% rglikely that the network will
output the correct rhythm by chance alone, yet the giveh definition specifies that such

will happen 19 times out of 20. A more }@ed\g

| .
‘learned’ a rhythm after each ne ﬂo“ is\QQ%/li/Jze y to output its target value. Repeating

L
: finition and ¢ = 0.3 yields a mean of 9.87

repetitions of the rhythm (N /,—_- 1 68). With such a definition, it is not likely that
the network will outputth @t hythm precisely, but it is significantly more likely

7.9 x 10*® unique 4-beat rhythms, and it is

inition would be that the network has

the the last experiment with th

i /Correct, which should produce something that

than random to get each ti
resembles the rhyt%o er words, after hearing a new rhythm only a few times, the

)
network shouldso \ﬁ% i e/%c is starting to get the gist.
) )

[
\\

usical situations, it may be appropriate for the robot not to play the same

In man

a
rhyth the human, but to always accompany rhythm a with rhythm b. In principal,
ohuman percussionists could train the robot to exhibit this behaviour, if one human’s
&h as used as the network input and the other human’s as the target output.

16



Corpus of Rhythms

This shows that a previously-untrained network can learn individual rhythmséi&/\

can it also retain rhythms it has learned? In a more standard machine-learning s

the network would be pre-trained with a corpus of rhythms prior to human j

network learn a corpus of rhythms? The same 66 rhythms as aboye @?@%@Q

this. Here, after initializing the network and training it to outputzeros, eac rvhythm was

rhythms had been learned. Indeed, on average, the networ

after hearing each rhythm 305.50 times (¢ = 0.15, N = 10
take longer to learn, according to Equation 1; in the ﬁ npda aset one outlier rhythm

was twice as long as any other, and this one always 00 m&fh longer to learn than the
others. Excluding it from the dataset resudte e %}of 106.50 repetitions of each

rhythm (IV = 10,0 = 11.38). The convergence general, could probably be

improved using standard technizu>es ( M Q, scrambling the order on each cycle,

. N/
g, Qkéf,h here the goal was to demonstrate that
en

the network is capable of learni

Newton’s method, batch lear

produce certain timbres across a large variety

of contexts — offline bat maximum efficiency was not the primary goal.

ecific rhythms, it would of course be faster and more

If the only goal wefe.to tear
precise to simply t@b W at the human plays, hash it, and store it in a database.

Some advanta%es h mgﬂwod presented here are as follows: this method is agnostic to

the length of’r §t\h\ ))atterns so it is not necessary to explicitly segment the pattern
boundal;/l/ s% networks tend to be impervious to small variations in input, as may
res

ise 4s t of transcription error or creative variation; fuzziness at the output may

bedesirab alleviate monotony — because a trained network contains a statistical

%ﬂel/f the human’s playing, this fuzziness may be accepted as musically interesting

17



variation

Signal Rhythms \

Another task not suitable for database lookup is predicting changes in the
according to context. Often in the rhythmic music of Africa and Latin Americ sp{c ‘jﬂ/
rhythms are used to signal musical changes. A good example come
rhythms in the dataset, called Yankadi and Makru. The basic Ya @15 repeated
until the drum leader plays a signal rhythm (either on a whistle or adr ich signals

the switch to Makru. Then the drummers repeat the Mak

plays the signal again, which prompts the transition back \\;j i, etcetra. So, the

signal rhythm could be followed by either Yankadi or Ma nding on the context.

Can the network learn and retain the ability to Q/ C ﬁhat the human will play

following the signal? This was tested as f. s<A ntunerical sequence was constructed

comprising 3 repetitions of Yankadi, followe e signal, followed by 3 repetitions of

Makru, followed by the signal again. Tll“(@{(e }t’itlons are the minimum such that the
network cannot learn this seq elérflythm, i.e. every six beat window is not
k.ca

unique; in other words, the ne

(A

ot know in advance whether the human plans

on playing the signal or, no/t’ﬁér—?eRe

on of the current rhythm. This rhythm was used
to train the network wit :@yl the least accurate output neuron over the whole

sequence was at least 4%% e, (roughly meaning that it was about 40% accurate in
guessing whether nanwould branch to the signal or continue repeating the

rhythm). Ther@ﬁa?l\{o recording was constructed which contained an arbitrary

number of re

t}tten’ (s of each rhythm (always 8), each followed by the signal. This audio
tile wag|fedinto-th ork and conceptually paused after the signal, at which time the
etwork.had already predicted the next two beats. The probability that the predicted

two beats would belong to the correct rhythm was calculated again according to
|

q }07/1. This process was repeated 20 times (10 transitions to each of Yankadi and
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Table 2. Learning Improvisation

IN/K
Experiment Unit of Result Result &/\7

Note Density ~ Correlation and slope of regression line for in vs. out note density r=0.977; m = 1.0
Meter Probability of playing on an incorrect timepoint 0.39%
Syncopicity Correlation and slope of regression line of input vs. output syncopicity ~ r = 0.96; m = 0.

ez

Makru). On average, the probability that the network would output the first two

the correct rhythm was 0.96 (N = 20,0 = 0.029). During this test, thé network.continued

to learn online from the input sequence with a rate of 0.1. As leafnifig goesthand-in-hand
with forgetting previous information, one might predict that the extra repétitions of

network to forget the

Yankadi and Makru in the test sequence would have caus
meaning of the signal in the meanwhile. On the contrary, @fs@iﬁ
accuracy was observed over time (it actually increaS}dr inally), even though this

task updated the network weights 720 times during teagg (there were that many beats

in the input sequence). \_/

Learning Improvisation /7

'\w@
e ’§ Ability to learn specific, repeated

ay improvise rhythms with no explicit

The preceding section treat@

rhythms. In a different scenar

bot would not be expected to play in unison with

structural repetition. In that
the human, but should te@jr match or deliberately oppose salient characteristics

of the human’s music.<Three tasks were used to assess the network’s ability to do this, as
ed,; d

will be presently disc
[ __\ /
L\ |

N

harac

the results are summarized in Table 2.

Note Density

Ong’suc is the note density, d, of the music, which may be defined here as

ntunber of onsets divided by the number of timepoints in a given span of music, or,
if thythms ar€ statistical, d = ¢ | P[0.]/C. Very sparse rhythms may have a different
%hycharacter than very dense rhythms, and in many cases it would be appropriate

19



for the robot to match the human’s d. Consider a scenario wherein the human '\K

improvises a rhythm with a particular character and corresponding d for a while, 4%/%\/}%\

after some time begins improvising with a new character and corresponding d. C
robot adapt to this change? This was tested as follows. First, a very long rhythré;\r/

contained 50 such concatenated segments. To train the netwotk, the entire sequence was

shifted through the network, to simulate previous interactgﬁ\w- h ahuman. Then a new
6000-beat validation sequence was constructed by t}?s ??gmeqpé, and shifted through
0

a
the network. At each beat of the validation sequer’lcitrpbid /b/s\erved rhythmic density of
u

edictes
subsequently correlated. The input density and ‘eutput/density were found to be linearly

correlated with r = 0.977, and the regre/s@}ins
(

Y )
network is very good at matchi Q‘ : ﬂoL@d@j'ty of improvised rhythms. In certain

o_oppose the human’s d rather than mimic it,

such as when a foreground ?ms ejin one part should be paired with a background

role in the other part; t s@

achieving this. % /

Meter ]
t /-_‘\ /

—
sak@haracteristic of rhythm is its meter. In particular, in most cases, the

the network input (previous 6 beats) and one beat) were recorded and

a slope of 1, meaning that the

scenarios, it might be desirable

ethod does not present an obvious way of

Anothe

human’s/decision.to play in either simple or compound meter should be matched by the
pa
le

er is characterized by a binary or quaternary subdivision of the beat

the 15¢, 4" 7th 10" timepoints (i.e. 16th notes or semiquavers) of any

\

at, ji‘eas compound meter uses a tripartite subdivision with onsets occurring on

20



the 1%, 5" and 9" timepoints (triplets). These shall be referred to as the ‘valid’

timepoints for the corresponding meters. The network’s ability to match the 1nput%§§

was tested as follows. A training set of 1000 6-beat rhythms were constructed for c\

0.0039 (N = 1200, o = 0.029). Although this is reason ly %w/\noji/ce that it took a very
large number of training cycles to achieve. With m&q ){\ammg, the network will

begin producing invalid onsets with a probability 0 O on the majority of beats,
ability, distributed in small quantities
re training reduces the frequency

but will spuriously produce a relatively hig

across all invalid neurons, on a handfu}/&eats\

-@. obablh/;éj but does not seem to eliminate them. So

X n enough training, it does have trouble

on.specifi¢ timepoints.
Q)
Syncopicity ')

Yet another sa%’ich ac ristic of rhythm is syncopicity, s, which is a measure of

and value of these spuriously hi

how syncopate?éfa m ,13/ This experiment considers only the 1, 4", 7" 10t

timepoints ﬂ&\ﬂt referred to collectively as the ‘valid’ timepoints, whereas the 4%

\/?;7

e considered the syncopated timepoints. Here s shall refer to the

and 10th/s’p
thinic'density’defined over the syncopated timepoints divided by the rhythmic

itindefineéd over the valid timepoints for a given span of rhythm. Random

%ej with given s were constructed by, with probability s, populating syncopated

21



in other valid timepoints, resulting in an overall note-density of 0.5. The network’

timepoints with an onset in a random category, and doing so with a probability of 1 — 'i\g)

ability to match syncopicity was tested as for note density; i.e. a 6000 beat traini?g

0>

\The/
is iskgnx}stent with

l¢ outputting

sequence followed by a 6000 beat validation example, with 120-beat segments wi

random 7. Output syncopicity was 96% linearly correlated with input syn

slope of the regression line was 0.80 indicating that although the n

at matching s, it has some trouble producing extreme values of 4.
the results of meter test above, which suggests the network has som

exactly 0 on specific timepoints.

(O
Future Work \\ g,

|
In the future, the work presented in this paper Qggf tested with human
(-

interactors. How does this method compdre ine with another human, or alone, or

to a robot that generates random rhythms, no actively? Does this method feel
responsive? If users had a percussion 1 @@}ﬂoying this algorithm at home, would it

encourage them to play longer.orx

fuzziness at the robot’s output

Q)
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